Inspection Using Model-Based Eddy Current Sensors and Analysis

CSAT 2021

June 22nd, 2021

JENTEK Sensors, Inc.

121 Bartlett Street, Marlborough, MA 01752-3025

Tel: 781-373-9700; Email: jentek@jenteksensors.com

jenteksensors.com

JENTEK Technology Description

- 1. Model-Based Sensors: MWM®-Arrays
 - Design the sensors to match the physics

- 2. Accurate Electronics: 8200 GridStation[®] and jETTM Instrumentation
- True Impedance Measurement

- 3. Real Property Analysis: GridStation Software using Model-Based Multivariate Inverse Methods
- Rapid conversion of sensor data into real material properties
 - · Electrical conductivity
 - · Magnetic Permeability
 - Thickness

4. Ease of Use

- Air Calibration No Ref. Std.
- Imaging
- Noise Suppression

Model-Based Sensor Design

- Coils of wire for the drive and sense work well, but are difficult to model accurately.
- Flat sensors can be modelled more accurately.
- Pros:
 - Enables model-based methods
 - Microfabrication techniques from the PCB industry can be used to produce thin, flexible sensors
 - Arrays using linear drive windings can be driven continuously (no switching)
 - Air Calibration: ASTM Standard E2338-11

Cons:

 Reduced signal levels due to smaller number of turns on the drive and sense coils

MWM sensors and MWM-Arrays covered by issued and pending patents, including, but not limited to: 8,928,316, 8,803,515, 8,768,657, 8,494,810, 8,237,433, 8,222,897, 8,050,883, 7,994,781, 7,876,094, 7,812,601, 7,696,748, 7,589,526, 7,533,575, 7,528,598, 7,526,964, 7,518,360, 7,467,057, 7,451,657, 7,451,639, 7,411,390, 7,385,392, 7,348,771, 7,289,913, 7,280,940, 7,230,421, 7,188,532, 7,183,764, 7,161,351, 7,161,350, 7,106,055, 7,095,224, 7,049,811, 6,995,557, 6,992,482, 6,952,095, 6,798,198, 6,784,662, 6,781,387, 6,727,691, 6,657,429, 6,486,673, 6,433,542, 6,420,867, 6,380,747, 6,377,039, 6,351,120, 6,198,279, 6,188,218, 6,144,206, 5,966,011, 5,793,206, 5,629,621, 5,990,677 and RE39,206

Grid Methods: Lattices and Hyperlattices

- A single frequency can be used to estimate two properties
 - Conductivity / Lift-off
 - Permeability / Lift-off
- Multiple frequencies are required to estimate three or more properties
 - Typical properties:
 - Substrate conductivity
 - Cold spray conductivity
 - Cold spray thickness
 - Lift-off
 - Other properties:
 - Substrate permeability
 - Substrate thickness
 - Gap
 - · Cold spray permeability

Aluminum Cold Spray on Aluminum

- Three frequency method to estimate:
 - Substrate conductivity
 - Cold spray conductivity
 - Cold spray thickness
 - Lift-off

Aluminum-on-Aluminum Cold Spray

- Samples produced by Solvus Global
- Access to samples provided by Mississippi State University
- 6061 cold spray on a 6061 substrate
- Thickness was measured to be 0.8mm by the vendor

Parameters for production:

Travel speed: 200mm/s

Powder feed rate: 4rpm

Line spacing: 0.5mm

Standoff distance: 25mm

This work was supported by National Center for Manufacturing Sciences (NCMS) and United States Department of Army Research Lab (ARL); Collaboration Agreement #202031-141054 CTMA Cooperative Agreement #HQ0034-15-2-0007.

Aluminum-on-Aluminum Cold Spray

 Conductivity of the substrate (~49% IACS) is significantly different from the conductivity of the cold spray coating (25% - 30% IACS). This difference enables independent measurement.

This work was supported by National Center for Manufacturing Sciences (NCMS) and United States Department of Army Research Lab (ARL); Collaboration Agreement #202031-141054 CTMA Cooperative Agreement #HQ0034-15-2-0007.

Disbonds

- Data from 2013
- Shows sensitivity to simulated disbonds
- Note: In this case, material was removed to simulate the disbond. Tight disbonds with no gap will be difficult to detect.

JENTEK Sensors, Inc.

Non-ferrous Metal Cold Spray on Steel

- Three frequency method to estimate:
 - Substrate permeability (assumed conductivity value)
 - Cold spray conductivity
 - Cold spray thickness
 - Lift-off

Non-ferrous Metal Cold Spray on Steel

Damaged in Cold Spray Layers

 Properties such as cold spray conductivity can be correlated with damage conditions

Inspection through Cold Spray: Cracks

Thank You

JENTEK Sensors, Inc. 121 Bartlett Street Marlborough, MA 01752-3025 jenteksensors.com

Todd Dunford
Vice President of Product Engineering
todd.dunford@jenteksensors.com
781-577-2315